sorting in data structure



sorting in data structure

Sorting in the context of data structures refers to the arrangement of data elements in a specific order. The order might be ascending or descending, and the goal is to make it easier to search for and retrieve specific elements.

Bubble sort


Bubble Sort is a simple sorting algorithm that repeatedly steps through the list, compares adjacent elements, and swaps them if they are in the wrong order. 

The pass through the list is repeated until the list is sorted. Here's a step-by-step explanation of each iteration of the Bubble Sort algorithm in C++:

 

Now, let's break down the algorithm step by step:

 

1. Initial Array: `64 25 12 22 11`

 

2. First Iteration (i=0):

   - Compare and swap `64` and `25`: `25 64 12 22 11`

   - Compare and swap `64` and `12`: `25 12 64 22 11`

   - Compare and swap `64` and `22`: `25 12 22 64 11`

   - Compare and swap `64` and `11`: `25 12 22 11 64`

 

3. Second Iteration (i=1):

   - Compare and swap `25` and `12`: `12 25 22 11 64`

   - Compare and swap `25` and `22`: `12 22 25 11 64`

   - Compare and swap `25` and `11`: `12 22 11 25 64`

 

4. Third Iteration (i=2):

   - Compare and swap `12` and `22`: `12 11 22 25 64`

   - Compare and swap `22` and `11`: `12 11 22 25 64`

 

5. Fourth Iteration (i=3):

   - Compare and swap `12` and `11`: `11 12 22 25 64`

 

6. Sorted Array: `11 12 22 25 64`

 

The algorithm has completed when no more swaps are needed in a pass, indicating that the array is now sorted.

 

Let's consider an array of integers as an example:

 #include <iostream>

using namespace std;

void swap(int &a, int &b) {

    int temp = a;

    a = b;

    b = temp;

}

 

void bubbleSort(int arr[], int n) {

    for (int i = 0; i < n - 1; i++) {

        for (int j = 0; j < n - i - 1; j++) {

            // Compare adjacent elements

            if (arr[j] > arr[j + 1]) {

                // Swap them if they are in the wrong order

                swap(arr[j], arr[j + 1]);

            }

        }

    }

}

 

int main() {

    int arr[] = {64, 25, 12, 22, 11};

    int n = sizeof(arr) / sizeof(arr[0]);

 

    cout << "Original array: ";

    for (int i = 0; i < n; i++) {

        cout << arr[i] << " ";

    }

 

    bubbleSort(arr, n);

 

    cout << "\nSorted array: ";

    for (int i = 0; i < n; i++) {

        cout << arr[i] << " ";

    }

 

    return 0;

}

 

 

selection sort

Selection sort is a simple sorting algorithm that works by repeatedly finding the minimum element from the unsorted part of the array and putting it at the beginning. Here's a step-by-step explanation of the selection sort algorithm in C++:

Here's a step-by-step breakdown of the selection sort algorithm using the example array {64, 25, 12, 22, 11}:

 

1. Iteration 1:

   - Minimum element: 11 (at index 4)

   - Swap elements at index 0 and index 4: {11, 25, 12, 22, 64}

 

2. Iteration 2:

   - Minimum element: 12 (at index 2)

   - Swap elements at index 1 and index 2: {11, 12, 25, 22, 64}

 

3. Iteration 3:

   - Minimum element: 22 (at index 3)

   - Swap elements at index 2 and index 3: {11, 12, 22, 25, 64}

 

4. Iteration 4:

   - Minimum element: 25 (at index 3)

   - Swap elements at index 3 and index 4: {11, 12, 22, 25, 64}

 

5. The array is now sorted: {11, 12, 22, 25, 64}

 



#include <iostream>

 using namespace std;

void selectionSort(int arr[], int n) {

    for (int i = 0; i < n - 1; i++) {

        // Assume the current index is the minimum

        int minIndex = i;

 

        // Find the index of the minimum element in the unsorted part

        for (int j = i + 1; j < n; j++) {

            if (arr[j] < arr[minIndex]) {

                minIndex = j;

            }

        }

 

        // Swap the found minimum element with the first element

        int temp = arr[minIndex];

        arr[minIndex] = arr[i];

        arr[i] = temp;

 

        // Print the array after each iteration

        cout << "Iteration " << i + 1 << ": ";

        for (int k = 0; k < n; k++) {

            cout << arr[k] << " ";

        }

        cout << endl;

    }

}

 

int main() {

    int arr[] = {64, 25, 12, 22, 11};

    int n = sizeof(arr) / sizeof(arr[0]);

 

    cout << "Original array: ";

    for (int i = 0; i < n; i++) {

        cout << arr[i] << " ";

    }

    cout << endl;

 

    selectionSort(arr, n);

 

    cout << "Sorted array: ";

    for (int i = 0; i < n; i++) {

        cout << arr[i] << " ";

    }

    cout << endl;

 

    return 0;

}

 

insertion sort

Insertion Sort is a simple sorting algorithm that builds the final sorted array one item at a time. It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort. However, it performs well for small datasets or lists that are mostly sorted. Here's a step-by-step explanation of how Insertion Sort works in C++:

 

#include <iostream>

using namespace std;

 

void insertionSort(int arr[], int n) {

    for (int i = 1; i < n; i++) {

        int key = arr[i];

        int j = i - 1;

 

        // Move elements of arr[0..i-1] that are greater than key to one position ahead of their current position

        while (j >= 0 && arr[j] > key) {

            arr[j + 1] = arr[j];

            j = j - 1;

        }

 

        arr[j + 1] = key;

       

        // Print the array after each iteration

        cout << "Iteration " << i << ": ";

        for (int k = 0; k < n; k++) {

            cout << arr[k] << " ";

        }

        cout << endl;

    }

}

 

int main() {

    int arr[] = {12, 11, 13, 5, 6};

    int n = sizeof(arr) / sizeof(arr[0]);

 

    cout << "Original array: ";

    for (int i = 0; i < n; i++) {

        cout << arr[i] << " ";

    }

    cout << endl;

 

    insertionSort(arr, n);

 

    cout << "Sorted array: ";

    for (int i = 0; i < n; i++) {

        cout << arr[i] << " ";

    }

    cout << endl;

 

    return 0;

}

 

Let's go through each iteration of the insertion sort algorithm with the provided array {12, 11, 13, 5, 6}:

 

1. Iteration 1:

   - Array: 12 11 13 5 6

   - Key: 11

   - Compare 11 with 12, swap if needed: 11 12 13 5 6

 

2. Iteration 2:

   - Array: 11 12 13 5 6

   - Key: 13

   - Compare 13 with 12, no swap: 11 12 13 5 6

 

3. Iteration 3:

   - Array: 11 12 13 5 6

   - Key: 5

   - Compare 5 with 13, swap: 11 12 5 13 6

   - Compare 5 with 12, swap: 11 5 12 13 6

   - Compare 5 with 11, swap: 5 11 12 13 6

 

4. Iteration 4:

   - Array: 5 11 12 13 6

   - Key: 6

   - Compare 6 with 13, swap: 5 11 12 6 13

   - Compare 6 with 12, swap: 5 11 6 12 13

   - Compare 6 with 11, swap: 5 6 11 12 13

 

The final sorted array is 5 6 11 12 13. The outer loop iterates over each element starting from the second one, and the inner loop compares and swaps elements to insert the current element into its correct position in the sorted subarray.

quicksort

Quicksort is a popular sorting algorithm that follows the divide-and-conquer paradigm. It works by selecting a pivot element from the array and partitioning the other elements into two sub-arrays according to whether they are less than or greater than the pivot. The process is then applied recursively to the sub-arrays.

 

Here's an example of the Quicksort algorithm in C++ with a step-by-step explanation for each iteration:

 

#include <iostream>

 using namespace std;

void swap(int &a, int &b) {

    int temp = a;

    a = b;

    b = temp;

}

 

int partition(int arr[], int low, int high) {

    // Select the pivot element (in this case, the last element)

    int pivot = arr[high];

 

    // Initialize the index of the smaller element

    int i = low - 1;

 

    // Traverse the array and rearrange elements

    for (int j = low; j < high; j++) {

        if (arr[j] < pivot) {

            i++;

            swap(arr[i], arr[j]);

        }

    }

 

    // Swap the pivot element with the element at (i + 1), putting the pivot in its correct position

    swap(arr[i + 1], arr[high]);

 

    // Return the index of the pivot element

    return i + 1;

}

 

void quicksort(int arr[], int low, int high) {

    if (low < high) {

        // Partition the array into two halves

        int pivotIndex = partition(arr, low, high);

 

        // Recursively sort the sub-arrays

        quicksort(arr, low, pivotIndex - 1);

        quicksort(arr, pivotIndex + 1, high);

    }

}

 

int main() {

    // Example array

    int arr[] = {12, 4, 5, 6, 7, 3, 1, 15};

 

    // Calculate the size of the array

    int size = sizeof(arr) / sizeof(arr[0]);

 

    // Print the original array

    cout << "Original array: ";

    for (int i = 0; i < size; i++) {

        cout << arr[i] << " ";

    }

    cout << endl;

 

    // Apply Quicksort

    quicksort(arr, 0, size - 1);

 

    // Print the sorted array

    cout << "Sorted array: ";

    for (int i = 0; i < size; i++) {

        cout << arr[i] << " ";

    }

    cout << endl;

 

    return 0;

}


 

Let's go through the steps for a simple example:

 

Original array: 12 4 5 6 7 3 1 15

 

1. First Iteration:

   - Pivot: 15

   - Partition: 12 4 5 6 7 3 1 | 15

   - Swap: 1 4 5 6 7 3 | 12 | 15

   - Pivot index: 6 (element 15 is now in its correct position)

 

   Now the array is partitioned into two sub-arrays: [1, 4, 5, 6, 7, 3] and [15]. The pivot (15) is in its correct position.

 

2. Second Iteration (left sub-array):

   - Pivot: 3

   - Partition: 1 | 4 | 5 | 6 7 | 3

   - Swap: 1 | 4 | 5 | 3 | 7 | 6

   - Pivot index: 3 (element 3 is in its correct position)

 

   The left sub-array is now [1, 4, 5, 3, 7, 6], and the pivot (3) is in its correct position.

 

3. Third Iteration (right sub-array):

   - Pivot: 7

   - Partition: 1 4 5 3 | 6 | 7

   - Swap: 1 4 5 3 | 6 | 7

   - Pivot index: 4 (element 7 is in its correct position)

 

   The right sub-array is now [6, 7], and the pivot (7) is in its correct position.

 

4. Continue with recursive calls:

   - The left sub-array [1, 4, 5, 3] will be partitioned, and the pivot 5 will be in its correct position.

   - The right sub-array [6] is already sorted.

   - The left sub-array [1, 4, 3] will be partitioned, and the pivot 4 will be in its correct position.

   - The right sub-array [6] is already sorted.

   - ...

 

5. Final Result:

   The sorted array is [1, 3, 4, 5, 6, 7, 12, 15].

 

mergesort

Certainly! Merge Sort is a popular divide-and-conquer sorting algorithm that recursively divides an array into two halves, sorts each half, and then merges them back together. Here's a step-by-step explanation of the Merge Sort algorithm without using vectors, focusing on each iteration:

 

Let's assume you have an array `arr` of size `n` that you want to sort using Merge Sort.

 

1. Initial Array:

   arr = [4, 2, 7, 1, 9, 5, 3, 8]

 

2. First Iteration:

   - The array is divided into two halves: `[4, 2, 7, 1]` and `[9, 5, 3, 8]`.

   - Each half is recursively sorted using the same Merge Sort algorithm.

   - After sorting, the two halves are merged together.

 

     Left Half:

     [4, 2, 7, 1]

     Right Half:

     [9, 5, 3, 8]

     Merged Result:

     [2, 4, 1, 7, 3, 5, 8, 9]

 

3. Second Iteration:

   - The left and right halves of the array are further divided and recursively sorted.

   - The left half `[2, 4]` is divided into `[2]` and `[4]`.

   - The right half `[1, 7, 3, 5, 8, 9]` is divided into `[1, 7, 3]` and `[5, 8, 9]`.

   - After sorting, the divided and sorted halves are merged back.

 

     Left Half (of left half):

     [2]

     Right Half (of left half):

     [4]

     Merged Result (of left half):

     [2, 4]

 

     Left Half (of right half):

     [1, 7, 3]

     Right Half (of right half):

     [5, 8, 9]

     Merged Result (of right half):

     [1, 3, 5, 7, 8, 9]

 

     Final Merged Result (of the entire array):

     [1, 2, 3, 4, 5, 7, 8, 9]

 

4. Final Sorted Array:

   [1, 2, 3, 4, 5, 7, 8, 9]

 

 

This process continues until the entire array is sorted. The key step is the merging process, where two sorted halves are combined to produce a larger sorted array. The recursion ensures that each subarray is eventually sorted.

 #include <iostream>

 using namespace std;

void merge(int arr[], int left, int mid, int right) {

    int n1 = mid - left + 1;

    int n2 = right - mid;

 

    // Create temporary arrays to hold the two halves

    int L[n1], R[n2];

 

    // Copy data to temporary arrays L[] and R[]

    for (int i = 0; i < n1; i++)

        L[i] = arr[left + i];

    for (int j = 0; j < n2; j++)

        R[j] = arr[mid + 1 + j];

 

    // Merge the two halves back into the original array

    int i = 0, j = 0, k = left;

    while (i < n1 && j < n2) {

        if (L[i] <= R[j]) {

            arr[k] = L[i];

            i++;

        } else {

            arr[k] = R[j];

            j++;

        }

        k++;

    }

 

    // Copy the remaining elements of L[], if there are any

    while (i < n1) {

        arr[k] = L[i];

        i++;

        k++;

    }

 

    // Copy the remaining elements of R[], if there are any

    while (j < n2) {

        arr[k] = R[j];

        j++;

        k++;

    }

}

 

void mergeSort(int arr[], int left, int right) {

    if (left < right) {

        // Same as (left+right)/2, but avoids overflow for large left and right

        int mid = left + (right - left) / 2;

 

        // Recursively sort the first and second halves

        mergeSort(arr, left, mid);

        mergeSort(arr, mid + 1, right);

 

        // Merge the sorted halves

        merge(arr, left, mid, right);

    }

}

 

int main() {

    int arr[] = {12, 11, 13, 5, 6, 7};

    int arr_size = sizeof(arr) / sizeof(arr[0]);

 

    cout << "Given array is \n";

    for (int i = 0; i < arr_size; i++)

        cout << arr[i] << " ";

    cout << "\n";

 

    // Perform merge sort

    mergeSort(arr, 0, arr_size - 1);

 

    cout << "Sorted array is \n";

    for (int i = 0; i < arr_size; i++)

        cout << arr[i] << " ";

    cout << "\n";

 

    return 0;

}

0 Comments