numpy in python

 numpy



It is a Python library that provides a:

multidimensional array object, 

various derived objects (such as masked arrays and matrices), and 

an assortment of routines for fast operations on arrays, 

including mathematical, logical, shape manipulation, sorting, selecting, I/O, 

basic linear algebra, basic statistical operations, random simulation,etc.




In NumPy dimensions are called axes.



[[1., 0., 0.],

 [0., 1., 2.]]


the first axis represents the number of rows.

the second axis represents the number of columns.

axis '0' means columns.

axis '1' means row



The first axis has a length of 2, the second axis has a length of 3


important attributes of numpy:

1.ndarray.ndim:returns number of dimensions


2.ndarray.shape:returns a tuple of:

in 1 d:(n cols,)

in 2d:(n rows,n columns)

in 3d:(n tables,n rows,n columns)


3.ndarray.dtype: an object describing the type of the elements in the array. 


4.ndarray.size: the total number of elements of the array.


5.ndarray.itemsize:the size in bytes of each element of the array.


data types in array:

for string:

    datatype='S'

for int:

    datatype='i'

for unsigned integer:

    datatype=''

for float:

    dataype='f'

for complex:

    datatype='c'

for boolean:

    datatype='b'

for object:

    datatype='O'




array creation

there are multiple types of array:

zero-dimensional:single element

code:

import numpy as np

a=np.array(9)

print(a.ndim)

output:

0



one dimensional:single row multiple colums

code:

import numpy as np

a=np.array([4,5,7,8])

print(a.ndim)

output:

1


two dimensional:multiple row multiple column(single table)

code:

import numpy as np

a=np.array([

[5,7,3],

[4,7,3],

[3,8,5]

   ])

print(a.ndim)

output:

2

three dimensional:multiple tables multiple rows multiple columns(database)

code:

import numpy as np

a=np.array([

[

[4,6,3,5],

[4,6,3,7]

],

[

[7,4,2,7],

[6,4,7,8]

]

     ])

print(a.ndim)

output:

3




 

other array creation functions


np.zeros():to create an array filled with 0’s


syntax:

np.zeros(tuple_of_rows_and_columns,dtype=data_type)



note:


*tuple_of_rows_and_columns=(2,3)#2 rows and 3 columns

*dtype='S'

*dtype='i'

*dtype='f'

*dtype='c'





example:

import numpy as np

a=np.zeros((4,3),dtype='float')

print(a)



output:

[[0. 0. 0.]

 [0. 0. 0.]

 [0. 0. 0.]

 [0. 0. 0.]]






np.ones(): to create an array filled with 1’s

syntax:

np.ones(tuple_of_rows_and_columns,dtype=data_type)



np.empty():to create an array filled with random values

syntax:

np.empty(tuple_of_rows_and_columns,dtype=data_type)



np.arrange():to create an array filled with given range of data

syntax:

np.arrange(first_number, last_number,gap)





sorting an array

np.sort():sorts an array


Numpy provides a variety of functions for sorting and searching. 

There are various sorting algorithms like quicksort, merge sort and heapsort which is implemented using the numpy.sort() function.

SYNTAX:

np.sort(arr,order=)


import numpy as np

a = np.array([

[10, 2, 3], 

[4, 5, 6], 

[7, 8, 9]

    ])

print("Sorting along the columns:")

print(np.sort(a))


Sorting along the columns:

[[ 2  3 10]

 [ 4  5  6]

 [ 7  8  9]]







print("Sorting along the rows:")

print(np.sort(a, 0))


Sorting along the rows:

[[ 4  2  3]

 [ 7  5  6]

 [10  8  9]]



sorting on the basis of data type

data_type = np.dtype([('name', 'S10'), ('marks', int)])


arr = np.array([('Bhavesh', 200), ('Aman', 251)], dtype=data_type)

print("Sorting data ordered by name")

print(np.sort(arr, order='name'))


Sorting data ordered by name

[(b'Atul', 251) (b'Bhanu', 200)]


using the indices to sort the array

a 12

d 12

b 90

e 211

c 380



numpy.lexsort() function

This function is used to sort the array using the sequence of keys indirectly. This function performs similarly to the numpy.argsort() which returns the array of indices of sorted data.


import numpy as np

a = np.array(['a', 'b', 'c', 'd', 'e'])

b = np.array([12, 90, 380, 12, 211])

ind = np.lexsort((a, b))



print("printing indices of sorted data")

print(ind)


printing indices of sorted data

[0 3 1 4 2]




print("using the indices to sort the array")

for i in ind:

    print(a[i], b[i])










Finding the minimum and maximum elements from the array


The numpy.amin() and numpy.amax() functions are used to find the minimum and maximum of the array elements along the specified axis respectively.



import numpy as np

a = np.array([[2, 10, 20], [80, 43, 31], [22, 43, 10]])

print("The original array:\n")

print(a)

print("\nThe minimum element among the array:", np.amin(a))

print("The maximum element among the array:", np.amax(a))

print("\nThe minimum element among the rows of array", np.amin(a, 0))

print("The maximum element among the rows of array", np.amax(a, 0))

print("\nThe minimum element among the columns of array", np.amin(a, 1))

print("The maximum element among the columns of array", np.amax(a, 1))



random in numpy

Random number does NOT mean a different number every time. Random means something that can not be predicted logically.


randint

getting random numbers for an array:


from numpy import random

x = random.randint(100)

print(x)




The randint() takes a size parameter by which you can define the shape of an array.

from numpy import random

x=random.randint(100, size=(5))

print(x)



random.choice

from numpy import random

x = random.choice([3, 5, 7, 9], size=(10))#getting 10 element array containing only [3,5,7,9]

print(x)

example 1:

from numpy import random

#getting 10 element array containing only [3,5,7,9] with sepcified probability

x = random.choice([3, 5, 7, 9], p=[0.1, 0.3, 0.6, 0.9], size=(100))

print(x)

example 2:

from numpy import random

#getting 10 element array containing only [3,5,7,9] with sepcified probability

x = random.choice(["gold", "diamond", "silver", "platinum"], p=[0.4, 0.3, 0.2, 0.1], size=(100))
print(x.tolist().count("gold"))
print(x.tolist().count("diamond"))


change the dimensions:ndmin


import numpy as np

a=np.array([4,5,34,4,5],ndmin=3)

print(a)


astype():


a method that returns an array from a collection with the

defined data type


import numpy as np

a=np.array([4,5,34,4,5])

print(a)

b=a.astype(str)

print(b)





view

import numpy as np

a=np.array([4,5,34,4,5])

b=a

b[0]=54

print(a)

print(b)

print()


c=np.array([4,5,3,54,56])

d=c.view()

print(c)

print(d)

c[0]=3

print(c)

print(d)


copy

import numpy as np

a=np.array([4,5,34,4,5])

b=a.copy()

b[0]=54

print(a)

print()

print(b)


transpose


import numpy as np

a=np.array([

                        [4,3,5],

                        [12,34,56]

                ])


print(a.transpose())


split:

import numpy as np

a=np.array([3,2,4,4,3,2])

b=np.array_split(a,3)

print(b)

4,3,5,3,5,3,5

4,3

5,3

5,3

error:division


array_split:

import numpy as np

a=np.array([3,2,4,4,3,2,6])

b=np.array_split(a,3)

print(b)

3,4,2,5,3,5,3


3,4,2

5,3

5,3


slicing

indexing:

            positive:

                    1.starts from  0

                    2.works from left to right


            negative:

                    1.starts from  -1

                    2.works from right to left


import numpy as np

a=np.array([3,2,4,44,34,2,66,56,23])

print(a[0])

print(a[-1])

print(a[1:5])

print(a[-4:-2])

print(a[1:-1:3])

print(a[::-1])

print(a[3:])

print(a[:5])



import numpy as np

a=np.array([

                        [3,2,4,44,34,2],

                        [66,56,23,4,6,7]

                    ])

print(a[1,4])



import numpy as np

a=np.array(

                [

                        [

                            [3,2,4,44,34,2],

                            [66,56,23,4,6,7]

                        ],

                        

                        [

                            [3,2,4,44,344,4],

                            [66,56,243,4,6,7]

                        ]                 

                ])

print(a.ndim)

print(a[1,1,2])

print(a[0,1,2])

print(a[1,0,4])


searching

where():a method of numpy that returns the indexes of the data those match with the condition.



import numpy as np

a=np.array([4,5,3,54,56,67,7,4,2,4])

indexes=np.where(a==4)

print(indexes)



random in numpy


from numpy import random

a=random.choice(["gold","diamond","platinum"],p=[0.5,0.3,0.2],size=15)

print(a.tolist().count("gold"))

print(a.tolist().count("diamond"))

print(a.tolist().count("platinum"))


0 Comments